Information Capabilities Framework (ICF)

Credits: Albert Santiago, Alex, Arsalan Khan, Guneet Gill, and Maryam Moussavi

ICF 1 - Introduction
ICF 2 - Abstract
ICF 3 - Key Findings
ICF 4 - Recommendations
ICF 5 - Overview
ICF 6 -.Market Maturity
ICF 7 - Technology in Depth
ICF 8 - What ICF aims to do
ICF 9 - How NOT to use ICF
ICF 10 - Market Clock
ICF 11 - Hype Cycle
ICF 12 - Implementation Approach
ICF 13 - Adoption
ICF 14 - Magic Quadrant
ICF 15 - Deployment Risks
ICF 16 - Competitive Advantage
ICF 17 - Implementation Timeline
ICF 18 - Bottom Line
ICF 19 - Recommended Reading

Processing…
Success! You're on the list.

2 Takeaways from the 2018 Spring Meetings by the International Monetary Fund (IMF) and the World Bank

Every year the IMF and the World Bank hold a conference-style event that is referred to as the Spring Meetings. These Spring Meetings bring together central bankers, ministers of finance and development, private sector executives and academics to discuss global issues such as global economy, international development, and the world’s financial markets.

This year I had the opportunity to attend the 2018 Spring Meetings where discussions were held about threats and opportunities of technological changes as it affects global economies and policies. Here are 2 takeaways from the 2018 Spring Meetings focused on technology and innovation including some of my related articles:

  1. TECHNOLOGICAL ADVANCEMENTS AND JOBS
    •  Industrialization Paradigms
      • Typical Industrialization: Agriculture → Manufacturing → Services
      • Current Industrialization: Agriculture → Services
    • Impacts of Technology
      • Technological Changes → Job loss → Re-skill → New Jobs
      • Some jobs will never be recovered
      • The flow of technology and expertise doesn’t flow easily across countries
      • Even within countries, technological impacts are uneven causing inequality
      • A good balance between data privacy and business models is needed that benefits societies at a larger scale
      • Depending upon where innovation (internal or external) to the organizations is can impact society at different levels
      • A good balance of foundations and advance education is needed
      • Specialized knowledge can negatively impact holistic societal impacts
    • Artificial Intelligence (AI)
      • Dystopian Views: AI will take over most human activities and would rule over humans
      • Middle Ground Views: AI will augment and enhance human activities but never replace humans
      • Utopian Views: AI will take over most human activities that would free up time for humans to do other things
    • The Brave New World of Data
      • Data quality issues are borderless
      • Standard data definitions of economic data has to be agreed upon and used
      • Data is being used to build economic policies
      • Data is being used to create multinational economic blocs
      • Data is being used to assess the humming of the global economy
      • Data Standardization and Harmonization àData Transparency àData Accountability
  2. PARTNERSHIPS
    • For economic prosperity, no organization, country, region is an island in of itself
    • Bridges need to be created across, public, private, academic, non-profit and shareholders
    • Regulations are slow to adapt to technological advancements and can be too heavy-handed or light-touch if not properly understood by policymakers
    • Grassroots changes are affecting how governments function and adapt
    • Technology and innovation should have executive level consideration across all branches of government and not just a ministry or a few people

Bonus: IMF’s Innovation Lab (iLab)

IMF has created the iLab whose goal seems to be to look at how technology and innovation are affecting the global economy and economic policies in various countries.

Related Articles:

  1. 5 QUESTIONS TO ASK ABOUT ARTIFICIAL INTELLIGENCE
  2. WHERE IS MY BIG DATA COMING FROM AND WHO CAN HANDLE IT
  3. 5 QUESTIONS TO ASK ABOUT YOUR INFORMATION
  4. 5 QUESTIONS TO ASK ABOUT PREDICTIVE ANALYTICS
  5. 5 QUESTIONS TO ASK ABOUT YOUR BIG DATA
  6. 5 QUESTIONS TO ASK ABOUT PRESCRIPTIVE ANALYTICS
  7. IDENTIFYING ORGANIZATIONAL MATURITY FOR DATA MANAGEMENT
  8. UNDERSTANDING AND APPLYING PREDICTIVE ANALYTICS
  9. 5 OBSERVATIONS ON BEING INNOVATIVE (AT AN ORGANIZATIONAL LEVEL)
  10. 5 OBSERVATIONS ON BEING INNOVATIVE (AT AN INDIVIDUAL LEVEL)
  11. HOW DO YOU COMMUNICATE?
  12. 5 QUESTIONS TO ASK ABOUT YOUR BUSINESS PROCESSES
  13. 75 QUESTIONABLE THOUGHTS ABOUT ORGANIZATIONAL TRANSFORMATION
  14. 35 CONCEPTS THAT AFFECT ORGANIZATIONAL TRANSFORMATION EFFORTS
  15. SPICE FOR BUSINESS TRANSFORMATION
  16. 5 QUESTIONS TO ASK ABOUT YOUR CULTURE
World Map Data

Processing…
Success! You're on the list.

5 Questions to Ask About Artificial Intelligence

In 1956, John McCarthy, the father of Artificial Intelligence (AI), brought together expert thinkers from multiple disciplines to explore how machines could “mimic” certain human traits. These expert thinkers came from the fields of Computer Science, Engineering, Logic, Mathematics, and Psychology and wanted to find out how machines could:

  1. Use language
  2. Form abstractions and concepts
  3. Improve problems reserved for humans
  4. Improve themselves

Today, the field of AI also draws from the fields of Linguistics, Philosophy, Statistics, Economics, and others. Due to the advancements and inclusion of various fields, the definition of what AI is has also evolved. What was once considered AI, is now considered just one of many things a computer system does. In my view, AI is a capability and thus a computer system that can independently solve routine and non-routine problems through self-learning has AI capabilities. These capabilities of a computer system can range from Object Character Recognition (OCR), Natural Language Processing (NLP), Computer Vision, Motion Manipulation (in Robotics) and others.

Under the hood, AI-capable computer systems are a combination of algorithms, data, hardware, and software. When writing algorithms and eventually code for AI, software developers cannot really take into account all the various scenarios a computer system might encounter and what to do in those scenarios. Thus, AI-capable computer systems are coded in a way where they can learn from experience through training by using baseline datasets and then extrapolating them to other scenarios.

However, the problem with creating AI-capable computer systems is that these systems are still highly dependent on the quality of the underlying algorithms and the datasets, both of which can be created/provided by humans. As humans, we are prone to biases in not only creating algorithms but also incomplete data that can create AI-capable computer systems that are biased and would be making incorrect decisions.

For organizations that are looking to improve themselves, AI-capable computer systems can be used to help enhance customer experiences, improve operations and provide insights for making decisions. On the flip side, AI-capable computer systems that have weak algorithms and/or bad data can result in horrible decision-making. Now that we understand what is AI and how it can potentially be used, let’s ask the following questions:

Today

Tomorrow

Who is creating the underlying algorithms and cleaning the data?

Who should be creating the underlying algorithms and cleaning the data?
What happens when AI-capable computer systems make bad decisions?What should happen when AI-capable computer systems make bad decisions?
Where AI-capable computer systems are relevant for decision-making?Where should AI-capable computer systems be relevant for decision-making?
When is data being acquired?When should data be acquired?
Why AI-capable computer systems are being used?

Why AI-capable computer systems should be used?

As we can see, the human factor in AI-capable computer systems is a real threat/opportunity. And while we are far away from creating sentient beings that are capable of general intelligence, right now we do have AI-capable computer systems that can perform narrower tasks better than humans. What this means is that today and in the near future, specific tasks would be given to these AI-capable computer systems rather than humans. Keeping this in mind, organizations and governments are trying to figure out how to address this AI wave and put programs in place when certain jobs would go extinct.

Artificial Intelligence - Algo + Data

Processing…
Success! You're on the list.

How does Privacy affect Mobile Computing?

In the video below on CxO Talk, I asked Kevin Henrikson of Microsoft and Anindya Ghose of New York University (NYU) about the importance of data privacy.

In my opinion, beyond Notice and Consent for use of consumer data, other areas we should consider are:

  1. Data Breach – What should the consumers’ expect in the likelihood that the consumer data is compromised/hacked/lost?
  2. Data Portablity –  How can the consumers know which countries their data has been hosted or used for transit and what third-parties are using their data?

From the surface it might seem that the above consumer expectations are only for B2C companies but upon closer look it would be prudent to know that these expectations apply to B2B, B2G, Governments and also internal employees of these organizations.

Processing…
Success! You're on the list.

What Is The Future Of Data Analytics Going Beyond User Experience?

In the video below on CxO Talk, I asked Giorgos Zacharia, CTO of Kayak, about what comes next after data-based user experience improvements.

In my view, as organizations continue to collect data to improve user experiences, we have think beyond what is possible just to improve a product. Here are few suggestions:

  1. Collect data from your supply chain(s) to improve operations
  2. Collect data from your employees to improve employee experiences
  3. Collect data outside of your organization to see how it can improve you